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induces differential regulation of sex steroid
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Abstract

Background: Melatonin is associated with direct or indirect actions upon female reproductive function. However,
its effects on sex hormones and steroid receptors during ovulation are not clearly defined. This study aimed to
verify whether exposure to long-term melatonin is able to cause reproductive hormonal disturbances as well as
their role on sex steroid receptors in the rat ovary, oviduct and uterus during ovulation.

Methods: Twenty-four adult Wistar rats, 60 days old (+/- 250 g) were randomly divided into two groups. Control
group (Co): received 0.9% NaCl 0.3 mL + 95% ethanol 0.04 mL as vehicle; Melatonin-treated group (MEL): received
vehicle + melatonin [100 μg/100 g BW/day] both intraperitoneally during 60 days. All animals were euthanized by
decapitation during the morning estrus at 4 a.m.

Results: Melatonin significantly reduced the plasma levels of LH and 17 beta-estradiol, while urinary 6-
sulfatoximelatonin (STM) was increased at the morning estrus. In addition, melatonin promoted differential
regulation of the estrogen receptor (ER), progesterone receptor (PR), androgen receptor (AR) and melatonin
receptor (MTR) along the reproductive tissues. In ovary, melatonin induced a down-regulation of ER-alpha and PRB
levels. Conversely, it was observed that PRA and MT1R were up-regulated. In oviduct, AR and ER-alpha levels were
down-regulated, in contrast to high expression of both PRA and PRB. Finally, the ER-beta and PRB levels were
down-regulated in uterus tissue and only MT1R was up-regulated.

Conclusions: We suggest that melatonin partially suppress the hypothalamus-pituitary-ovarian axis, in addition, it
induces differential regulation of sex steroid receptors in the ovary, oviduct and uterus during ovulation.

Background
Melatonin (N-acetyl-5-methoxytryptamine) also known
as “chemical expression of darkness” is an indolamine
produced by pineal gland and secreted in a circadian
manner during the night [1]. It is indisputable that mel-
atonin has been potentially implicated as a therapeutic
agent in several conditions. In mammals, melatonin can
affect the reproductive function through activation of

receptor sites within the hypothalamic-pituitary-gonadal
axis [2]. Previous evidence has suggested that changes
consistent with inhibition of GnRH release occur after
melatonin implants [3]. Melatonin is found inside ovar-
ian follicles [4], thus proving its direct action in ovarian
function. It has also been proposed that pre-ovulatory
follicles contain high amount of melatonin which were
indirectly linked to the 17 b-estradiol (E2) and proges-
terone (P4) synthesis [5]. In melatonin-deprived rats, an
increased estrous frequency was inversely related to the
luteinizing hormone (LH) and follicle-stimulating hor-
mone (FSH) levels [6]. According to Soares et al. [7],
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the low melatonin levels lead to a reduction of P4 and
its receptors while increasing E2 levels. Moreover, it was
reported that melatonin might decrease E2 levels during
the premenopausal period [8]. Most studies investigating
the mechanism(s) by which melatonin modulates the
reproduction have focused mainly in the pituitary and
hypothalamus or in evaluating the effects of pinealect-
omy, with little attention devoted to the relationship
between exogenous melatonin treatment and female
reproductive tissues during ovulation. Furthermore,
these reproductive actions promoted by long-term mela-
tonin administration in a non-seasonal breeder (e.g. rat)
are yet poorly understood.
More recently, it was noted that administration of

melatonin at night induces prolonged diestrous phase in
normal rats [9,10]. There seem to be little doubt that
exogenous melatonin restores the basal gonadotropin
concentrations (FSH and LH) in aged rats as similar to
young rats [11], also having a stimulatory effect on E2
levels and pituitary responsiveness to LHRH [12].
Nevertheless, the effects of melatonin on reproductively
active rats, at the timing of ovulation, remain a matter
of debate.
In reproductive system, melatonin may interact with

sex steroids [13-15]. It is well-known that sex steroid
receptors might regulate a variety of physiological
responses in the ovary, oviduct and uterus tissue when
they are activated [13,16,17]. Estrogen receptor (ER), a
member of the nuclear receptor superfamily, has two
functional isoforms designated as ER-a and ER-b [18].
In ovaries, the granulosa cells express higher levels of
ER-b than ER-a, while ER-b is reportedly expressed at
lower levels in uterus [19]. Importantly, a repetitive loss
of ER-b expression or a decrease in ER-b/ER-a ratio is
linked to ovarian epithelial tumorigenesis [20]. Other
study showed a decreased number of uterine estrogen
receptor with concomitant increase of PR after 15-day
melatonin treatment [13]. However, none have evaluated
the role of melatonin considering different steroid
receptors isoforms. Despite of considerable effort, the
effects of long-term melatonin focused on reproductive
hormones and its specific receptors involving the ovar-
ies, oviducts and uterus are not well discussed.
Progesterone receptors (PRs), one of the well-charac-

terized estrogen-regulated genes, are expressed as PR-A
and PR-B isoforms [21]. PRA has a transactivation role
in some cells whereas it functions as a repressor of PRB
(heterodimer form) and androgen receptor [16].
Although it has long been emphasized that E2 up-regu-
lates PR, little is known as to whether PRA and B
expression is modulated by either E2 or melatonin.
Furthermore, E2 seems to alter expression from PRB to
PRA dominancy in oviduct and uterus [22,23]. Not sur-
prisingly, PRA, but not PRB expression, is necessary and

sufficient for ovulation process [17]. More recently, mel-
atonin significantly increased P4 as well as the number
of total PR in ovarian tissue at proestrus [15]. Other-
wise, Soares Jr. et al. [7] found a diminution of 6-sulfa-
toximelatonin (STM) metabolite and PR levels after
pinealectomy surgery. To date, the melatonin effects on
selective PRA and PRB have not been demonstrated.
Melatonin signals through at least two G protein-

coupled receptors, the MTR1 and MTR2 membrane
receptors, or via putative cytoplasmatic/nuclear sites
mediating the physiological responses [24,25]. Among
other actions, MTR1-binding melatonin is thought to
cause down-regulation of both ER-a protein and ER-a
mRNA [26] and, alternatively, it may inhibit the ligation
of E2-ER complex to the estrogen response elements
(ERE) on DNA [14,26], thus dampening the E2-
mediated effects. Since melatonin is a potential agent
controlling the reproduction, its long-term effects
related to reproductive tissues, at estrous phase, have
never been identified through MT1R receptors.
Therefore, the present study was undertaken to verify

whether exposure to long-term melatonin is able to
cause reproductive hormonal disturbances as well as
their role upon sex steroid receptors in the rat ovary,
oviduct and uterus during ovulation process.

Methods
Animals and experimental design
Twenty-four adult female rats (Rattus norvegicus albi-
nus), 60 days old (± 250 g) were obtained from the
Department of Anatomy, Bioscience Institute, UNESP -
Univ Estadual Paulista, Campus of Botucatu. All animals
were housed in polypropylene cages (43 cm × 30 cm ×
15 cm) with laboratory-grade pine shavings as bedding
and also maintained under controlled room temperature
(23 ± 1°C) and lighting conditions (12 L, 12 D photoper-
iod, lights switched on at 6 a.m). Initially, the animals
were randomly divided into two experimental groups (n
= 12/group). Control group: rats fed standard chow and
tap water ad libitum and receiving 95% ethanol 0.04 mL
+ 0.9% NaCl 0.3 mL (1:7 v/v) as vehicle; Melatonin-trea-
ted group: rats fed standard chow and tap water ad libi-
tum receiving vehicle + melatonin. At 90 days old,
females started to receive successive doses of melatonin
over 60 consecutive days. After melatonin treatment
period, all rats were monitored by vaginal swabs in a
dark room using a red dim illumination, and during the
early morning of estrus (timing of ovulation) at 4 a.m
(or Zeitgeber Time, (ZT) 22, corresponding to the envir-
onmental circadian time) they were anesthetized and
euthanized by decapitation for further analysis. Experi-
mental protocols were previously accepted by Ethical
Committee of the Institute of Bioscience/UNESP, Cam-
pus of Botucatu, SP, Brazil (Protocol n° 85/07).
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Procedures of melatonin administration
Successive doses of melatonin [100 μg/100 g BW] (M-
5250, purchased from Sigma Chemical, St Louis, MO)
were dissolved in 95% ethanol 0.04 mL, using 0.9%
NaCl solution as a vehicle [9]. The intraperitoneal infu-
sions (only vehicle or vehicle + melatonin) were daily
administered between 18:30 - 19:00 p.m (ZT 13).

Urine and reproductive organs collection
In the evening before they were killed, all animals
received the last injection of melatonin and they were
kept inside metabolic cages (Techniplast, Exton, PA,
USA) by 10 h in order to collect individual urine sam-
ples. Thereafter, all samples were centrifuged at 10,000
× g for 20 min at 4°C and stored at - 20°C. On the next
day and after sacrifice, all reproductive organs (ovaries,
oviducts and uterine horns) were entirely dissected and
weighed for further assays.

Sex hormones assay
Blood samples were collected from the trunk of decapi-
tated rats into heparinized tubes. Afterwards, plasma
was obtained by centrifugation at 1,200 × g for 15 min
at 4°C and stored at - 20°C until assayed by radioimmu-
noassay (RIA). Plasma samples were assayed for FSH
and LH by double-antibody RIA with specific kits pro-
vided by the “National Institute of Arthritis, Diabetes,
Digestive and Kidney Diseases” (NIADDK, Baltimore,
MD, USA). The FSH primary antibody was anti-rat
FSH-S11, and the standard FSH-RP2. The antiserum for
LH was LH-S10 using RP3 as reference. The lower limit
of detection for FSH and LH was 0.2 ng/mL and the
intra-assay coefficient of variation was 3% and 4%,
respectively. Plasma concentrations of E2 and P4 were
determined using Estradiol and Progesterone Maia kits
(Biochem Immunosystems, Serotec, Italy). The lower
detection limit and the intra-assay coefficient of varia-
tion were respectively 7.5 pg/ml and 2.5% for E2 and 4.1
ng/ml and 3.7% for P4. All samples were measured in
duplicate and at different dilutions, if necessary. In
order to prevent interassay variation, all samples were
assayed in the same RIA.

Determination of plasma melatonin and urinary 6-
sulfatoximelatonin (STM)
Melatonin was initially extracted from plasma (n = 12
samples/group) using methanol HPLC grade followed by
separation into columns Sep-Pak Vac C-18, reverse
phase, 12.5 nm (Water Corporation, Milford, Massachu-
setts, USA). Thereafter, 50 μL of reconstituted samples
were assayed with coat-a-count melatonin ELISA kits
and measured photometrically at a wavelength of 405
nm. The intra-assay coefficient of variation was 3%.
Urinary 6-STM (a metabolite of melatonin) was assayed

with solid-phase melatonin sulfate ELISA kits and,
finally, read at 450 nm. The intra-assay coefficient of
variation was 5.2%. Samples were double assayed at the
time to avoid interassay variations. All reagents and
microtiter plate were provided by IBL (IBL International,
Hamburg, Germany).

Western blotting analysis and protein quantification
After 60 days of melatonin treatment (100 μg/100 g
BW/day), the ovaries, oviducts and uterine horns were
rapidly removed and tissue samples of 50 mg were
immediately frozen in liquid nitrogen and stored at -80°
C. All tissues were homogenized with RIPA lysis buffer
(Pierce Biotechnology, Rockford, IL, USA), 10X (0.5 M
Tris-HCl, 1.5 M NaCl, 2.5% deoxycholic acid, 10% NP-
40, 10 mM EDTA, pH 7.4) and protease inhibitor cock-
tail (Sigma Chemical Co.) using a homogenizer (IKA®

T10 basic Ultra, Staufen, Germany). Aliquots containing
1:10 (v/v) of Triton X-100 were added to homogenates
and samples were placed on dry ice under agitation by 2
h in order to improving extraction. These suspensions
were centrifuged at 21,912 × g for 20 min at 4°C and
the pellet discarded. The protein concentrations were
measured by the Bradford micro-method for colori-
metric determination. Total proteins were dissolved in
1.5 × sample buffer previously described by Laemmli
and used for SDS-PAGE (Bio-Rad Laboratories, Her-
cules, CA, USA). Equal amounts of protein (70 μg) of
each sample were loaded per well onto preformed gradi-
ent gels, 4-12% acrylamide (Amersham Biosciences,
Uppsala, Sweden) with a Tris-glycine running buffer sys-
tem for electrophoresis (60 mA fixed during 2 h). After
electrophoresis, total proteins were electro-transferred
(200 mA fixed by 1 h 30 min) onto 0.2 μm nitrocellu-
lose membranes in a Tris-glycine-methanol buffer.
Kaleidoscope Prestained Standards (Bio-Rad) were used
as molecular weight markers. Thereafter, the mem-
branes were blocked with TBS-T solution containing 3%
BSA at room temperature (RT) for 60 min and then
incubated at 4°C overnight with rabbit primary antibody
AR-N20 anti-androgen receptor (AR); rabbit clone E115
anti-ERa; rabbit clone 68-4 anti-ERb; mouse monoclo-
nal [C262] anti-PRA and PRB and rabbit polyclonal
anti-MT1R (dilutions of 1:1000; 1:250; 1:500; 1:350;
1:500; 1:500 were carried out at 1% BSA, respectively).
This was followed by washing 3 × 5 min in TBS-T solu-
tion and then incubated for 2 h at RT with rabbit or
mouse HRP-conjugated secondary antibodies (diluted
1:1000 in 1% BSA; Sigma, St. Louis, MO, USA). After
sequential washing with TBS-T, signals were enhanced
and peroxidase activity was finally detected by mixing
10 mL PBS, 8 μl H2O2 and 0.02 g diaminobenzidine
(DAB) chromogen (Sigma Chemical Co.). Immunoreac-
tive bands of each protein (arbitrary units) were
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obtained from separate blots of six rats/group using
image analysis software (NIS-Elements, Advanced
Research, Nikon). b-actin was used as an endogenous
control and all results were expressed as mean ± SEM.
Immunoblotting concentrations (%) were represented as
optical densitometry values (band intensity/b-actin
ratio).

Statistical analysis
Data of plasma FSH, LH, E2, P4, melatonin, urinary 6-
SMT and western blotting analysis were performed by
Student’s t test with independent samples. Statistical sig-
nificance was set at P < 0.05 and significant results are
expressed as mean ± SEM. The statistical software used
was GraphPad Instat version 4 and Sigma Plot version
11.0 for graphic design.

Results
Plasma sex hormones, melatonin and urinary 6-STM
levels
After eight weeks of treatment, total LH and E2 levels
were reduced in melatonin-treated rats (p < 0.05). Con-
versely, FSH and P4 levels had not been influenced by
melatonin at the estrus phase (p > 0.05). These data
confirmed our previous reports in which long-term mel-
atonin administration leads to a reduced ovarian mass
and prolonged metaestrus and diestrus duration, with-
out blocking ovulation (recently published data). Addi-
tionally, there was no evidence for increased plasma
melatonin levels in animals receiving the treatment, but
the urinary 6-STM levels were significantly higher at the
morning of estrus (p < 0.01; Figure 1A-F).

Analysis of ovarian AR, ER-a, ER-b, PRA, PRB and MT1R
levels after treatment
Sex steroid receptors in reproductive female tract were
differentially expressed at the end of melatonin treat-
ment. In the ovarian tissue, despite of AR and ER-b
levels were not affected along the treatment, melatonin
significantly reduced ER-a and PRB levels (p < 0.05;
Figure 2A, B), beyond the ER-a/ER-b ratio (melatonin
1.17 ± 0.2 vs control 1.27 ± 0.3). Moreover, it was
observed that melatonin induced significant overexpres-
sion of PRA subunit and of its own receptor MT1R (p <
0.01; Figure 2A, B). There was also an increase of the
PRA/PRB ratio after melatonin treatment (melatonin
1.34 ± 0.6 vs control 0.73 ± 0.5).

Analysis of oviduct AR, ER-a, ER-b, PRA, PRB and MT1R
levels after treatment
Regarding to the oviduct tissue, expressions of AR and
ER-a, in addition to ER-a/ER-b ratio (melatonin 1.45 ±
0.8 vs control 1.73 ± 0.6) were significantly lower in
melatonin-treated group (p < 0.05), while both PRA and

PRB subunits had a remarkable increase after melatonin
treatment (p < 0.01; Figure 3A, B). No significant PRA/
PRB ratio was seen between the groups (melatonin 0.87
± 0.2 vs control 0.85 ± 0.4). Furthermore, the oviduct
ER-b and MT1R levels kept unchanged in the presence
of melatonin (Figure 3A, B).

Analysis of uterine AR, ER-a, ER-b, PRA, PRB and MT1R
levels after treatment
Following to uterus tissue, there were no differences for
AR, ER-a and PRA levels (p > 0.05; Figure 4A, B).
Although melatonin had significantly reduced the ER-b
and PRB subunits in the uterine tissues, its selective
receptor MT1R was clearly overexpressed (p < 0.05; Fig-
ure 4A, B). Moreover, in contrast to ovary and oviduct
tissue, melatonin significantly increased the uterine ER-
a/ER-b ratio (melatonin 0.90 ± 0.2 vs control 0.34 ±
0.4) but not the PRA/PRB ratio (melatonin 0.63 ± 0.6 vs
control 0.59 ± 0.5).

Discussion
The present study found that melatonin is able to reduce
LH and E2, but not FSH and P4 levels at estrous.
Although melatonin may act as a synchronizer of the
reproductive function, the cellular and molecular charac-
teristics of melatonin binding sites are so far unknown. It
seems obvious that melatonin does not act directly on
GnRH neurons [27,28] but, instead, exert indirect actions
on Kiss 1/GPR54 system responsible for controlling
reproduction via neural-axis by inducing low circulating
gonadotropins and sex steroids levels [27,29]. In this con-
text, the long-term melatonin treatment may be linked to
the phenotype of hypogonadotropic hypogonadism, evi-
denced by loss of ovarian mass, as previously demon-
strated by our group [9]. It has been proposed that
preovulatory LH surge, until the onset of estrus, depends
on the lowest melatonin levels [30,31] where increased
E2 could suppress its production. It is also known that
human preovulatory follicles contain amounts of melato-
nin in a concentration higher than those in the circulat-
ing serum, where it strongly regulates the steroid
synthesis by the gonads [32]. Ultimately, melatonin may
drastically influence the success of ovulation.
Indeed, exogenous melatonin induces a decrease in

LH surge, blocking ovulation and luteal phase with
increase in P4 levels, without affecting FSH or E2 levels
[33]. Melatonin was also seen to inhibit steroidogenesis
by altering cAMP levels through a direct action on
theca or granulosa cells of the follicles [32,34]. This dual
effect of melatonin allowed us to believe that low E2
levels can be associated with direct inhibition of path-
way for E2 biosynthesis since FSH levels was unchanged.
Furthermore, a positive feedback on LH secretion does
not occur when E2 levels are low, thus explaining, in
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part, the hormonal disturbances in female reproduction
caused by melatonin. Melatonin also regulates the
expression and activity of aromatase [35], acting as a
selective estrogen enzyme modulator, and further con-
tributing to a decrease in E2 levels. Following the treat-
ment, although the urinary 6-STM levels were raised at
morning estrus, plasma melatonin levels were
unchanged. This is due to the short half-life of melato-
nin, where it is rapidly converted into 6-STM prior to
elimination. In accordance to Graham et al. [36], the
increased 6-STM level is a good biomarker to predict
the effectiveness of treatment.

The activity of melatonin directly influencing the
ovary function and estrous cycle was first described by
Wurtman et al. [37] and as expected, similar findings
were previously confirmed by our group [9,38]. Recently,
Adriaens et al. [39] demonstrated that melatonin
increased P4 and androgen production in mouse prean-
tral follicles. These contradictory results are partially
due to different melatonin concentration, time and
route of administration and period of estrus stage eva-
luation. Brzezinski et al. [40] reported that melatonin
itself has no effect on basal P4 productions, but when
combined with LH analogues, melatonin potentiated the

Figure 1 Hormonal profile after 60-day melatonin treatment at morning estrus. (A) Plasma FSH levels (ng/mL), (B) Plasma LH levels (ng/
mL), (C) Plasma P4 levels (ng/mL), (D) Plasma E2 levels (pg/mL), (E) Plasma melatonin levels (pg/mL), (F) urinary 6-STM levels (ng/mL). Values
are expressed as mean ± SEM (N= 12 animals/group). * p < 0.05 vs. control group.
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stimulatory effect on intraovarian P4 production. Our
data corroborate those findings, in which P4 was unal-
tered by melatonin treatment and even LH levels were
insufficient to produce activity on P4 secretion. The pre-
sent study showed that long-term melatonin is able to
reduce the ER-a and PRB ovarian levels while increasing
PRA and its receptor MT1R at morning estrus. Indeed,
ER-a seems to be activated when intracellular cAMP is
elevated after non-transcriptional mechanisms mediated
by estrogens [41]. Alternatively, melatonin acting
through membrane-bound G protein-coupled MT1
receptor can inhibits adenylate cyclase activity, thus
decreasing cAMP levels [42]. This reduction may be a
direct effect by which melatonin decreases E2-induced
ER-a transcriptional activity. As a favorable condition,
the reduction in ER-a/ER-b ratio represents a protective
action of melatonin against estrogen-dependent tumor.
Both PRA and PRB have been shown to function as
ligand-dependent repressors of ER-mediated transcrip-
tional activity [43]. Furthermore, PRA may act as a

transdominant inhibitor of PRB and AR gene expression
[44]. In this context, melatonin treatment might be
accentuating PRA activity, thereby providing a negative
regulation of ER-a and PRB expression. Since PRA iso-
form is essential for ovulation to occur [17], the long-
term melatonin treatment could delay but not abolish
the ovulation, as we had already been noted. Curiously,
melatonin-deprived rats had lower expression of P4 and
PR than controls [7,15], thus proving that melatonin is a
key factor in PR regulation. Previous study has indicated
that melatonin binding receptor is high during estrus,
proestrus and diestrus, in contrast to low levels in
metaestrus when E2 and P4 are reduced [45,46]. Thus,
it allows us to conclude that both E2 and P4 regulate
MT1 receptor binding activity.
We demonstrated for the first time that total expres-

sion of oviduct PRA and PRB was enhanced while AR
and ER-a decreased after melatonin treatment. Gener-
ally, PRB is transcriptionally more active than PRA
[47], and it is well documented that PRA acts as a

Figure 2 Analysis of ovarian receptors . (A) Representative
Western blotting analysis of androgen receptor (AR), estrogen
receptor (ER-a and ER-b), progesterone receptor (PRA and PRB) and
melatonin receptor (MT1R) in ovarian tissue of rats receiving
melatonin [100 μg/100 g B.W]. Indicated concentrations of each
total protein (70 μg extracted from a pool of 6 organs/group) were
used to detect specific protein expression levels in the blots (upper
panel). (B) Densitometry values for AR, ER-a, ER-b, PRA, PRB and
MT1R levels were studied following normalization to the house-
keeping gene (b-actin). All results are expressed as mean ± SEM (N=
6 animals/group). * p < 0.05 vs. control group.

Figure 3 Analysis of oviduct receptors. (A) Representative
Western blotting analysis of androgen receptor (AR), estrogen
receptor (ER-a and ER-b), progesterone receptor (PRA and PRB) and
melatonin receptor (MT1R) in oviduct tissue of rats receiving
melatonin [100 μg/100 g B.W]. Indicated concentrations of each
total protein (70 μg extracted from a pool of 6 organs/group) were
used to detect specific protein expression levels in the blots (upper
panel). (B) Densitometry values for AR, ER-a, ER-b, PRA, PRB and
MT1R levels were studied following normalization to the house-
keeping gene (b-actin). All results are expressed as mean ± SEM (N=
6 animals/group). * p < 0.05 vs. control group.
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repressor of PRB-dependent activation genes and, like-
wise, it inhibits the transactivation of AR [16]. Surpris-
ingly, oviduct PRB has been up-regulated after
melatonin exposure. It is likely that melatonin pro-
moted a differential effect upon its regulatory mechan-
ism(s) independently of either P4 or PRA functions.
Moreover, the distinct transactivation properties,
including presence or absence of the PRB-specific AF-
3 domain, are probably due to the broad repertoire of
physiological responses to P4 [48]. Nevertheless, the
regulation of sex steroid receptors in oviduct is not yet
fully clarified. Similarly to the ovary, melatonin led to
a downregulation of oviduct ER-a through its direct
effect or indirectly by the fall in E2 levels. Hence, an
inverse ER-a/ER-b ratio also brings up a positive
action of melatonin to the oviduct. The oviduct MT1R
was not affected over the treatment, showing that, in
fact, the ovary and uterus are more responsive to the
effects of melatonin mediated by MT1R. Besides that,
it seems plausible that melatonin-induced changes
occur through different signaling pathway. It is well

emphasized that melatonin may exert its physiological
function by binding to melatonin receptors or even
through nuclear signaling involving RZR/ROR recep-
tors [49]. However, additional studies are needed for a
better understanding of melatonin binding sites.
In this study, the uterine ER-b and PRB was down-

regulated whereas MT1R was up-regulated. It is estab-
lished that E2 and P4 acts on the uterus by an interde-
pendent regulation of ER and PR [50,51]. Noticeably, it
has been suggested that E2 decreases the expression of
uterine ER but not PR, while P4 reduces the levels of
both receptors [52]. Taking into account that E2 levels,
which are responsible for increasing PR levels, were sup-
pressed by the treatment, our results could be explained,
in part, by the down-regulation of uterine PRB expres-
sion. In this context, the regulation of PRB appears to
be more sensitive than PRA, considering the fall in E2.
It has already been proposed that uterine ER-b, but not
ER-a, is detected under low amounts at the cellular
level [53]. On the other hand, our data pointed to an
increase in ER-a/ER-b ratio. These effects may be due
to differential ER expression associated with variations
into estrus period. Uterine MT1R was up-regulated after
melatonin treatment during ovulation, thereby support-
ing a direct regulation by melatonin itself. However, it
cannot be assumed that melatonin-bound uterine MT1R
is involved in down-regulation of ER-b. In contrast,
MT1R was found to be depleted after E2 has raised
[54], thus demonstrating a negative correlation. Finally,
the uterine AR levels seem to be not affected by melato-
nin during ovulation.

Conclusions
In summary, we reported that long-term melatonin is
able to partially suppress the neuroendocrine reproduc-
tive axis during ovulation, indirectly causing distur-
bances to ovary, oviduct and uterus.
Moreover, melatonin promoted differential regulation

of the sex steroid receptors on the reproductive tissues,
mostly acting “in situ” through its MT1R receptor (espe-
cially in ovarian and uterine tissue) or by altering the
dynamics and responsiveness of sex steroid receptor iso-
forms after binding to E2 or P4. These data represent
therefore an important benchmark for furthering the
understanding of melatonin-reproduction interface dur-
ing ovulation process.
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MT1R levels were studied following normalization to the house-
keeping gene (b-actin). All results are expressed as mean ± SEM (N=
6 animals/group). * p < 0.05 vs. control group.
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