Email updates

Keep up to date with the latest news and content from RB&E and BioMed Central.

Open Access Research

The characteristics of oviposition and hormonal and gene regulation of ovarian follicle development in Magang geese

Qingming Qin1, Aidong Sun3, Rihong Guo1, Mingming Lei2, Shijia Ying2 and Zhendan Shi2*

Author Affiliations

1 College of Animal Sciences, South China Agricultural University, Guangzhou 510642, China

2 Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China

3 Institute of Food Safety and Monitoring Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China

For all author emails, please log on.

Reproductive Biology and Endocrinology 2013, 11:65  doi:10.1186/1477-7827-11-65

Published: 16 July 2013

Abstract

Background

Egg laying in Magang geese is characterized by extended interruption between clutches and lowing laying rate. Both the ovarian follicular development and ovulation characteristics, and the associated endocrine and molecular regulatory mechanisms involved are poorly understood, but could be important for guiding development of molecule aided selection of egg laying performances in geese. This study, therefore, recorded egg-laying characteristics of Magang geese, and the endocrine and molecular regulatory mechanisms of ovarian follicular development, maturation, and ovulation in Magang geese.

Methods

Oviposition, ovarian follicle development, and reproductive hormone and gene expression profiles were observed in a small flock of Magang geese.

Results

Greater than 73% of eggs were laid during the day. The average oviposition interval was 46.8 h (36–55 h). It took approximately 18 days for large white follicles to develop into mature F1 follicles; follicular growth was exponential. LHR expression levels increased from the small to the large mature follicles, but FSHR expression decreased in the granulosa and thecal layers. As the follicles matured, inhibin alpha and inhibin betaA expression increased in the granulosa layer. Activin IR, activin IIRA, activin IIRB, and beta-glycan expressions also increased as the follicles increased in size, but were more abundantly expressed in the thecal than in the granulosa layers. During the oviposition cycle, plasma concentrations of gonadal hormones decreased rapidly, whereas the level of PGFM peaked around ovulation. The profiles of activin, inhibin, follistatin, estradiol, and progesterone leading to ovulation were characterized.

Conclusions

The molecular and endocrine mechanisms that regulate follicular development in Magang geese are similar to those in chickens. Moreover, gonadotropin regulation and interaction between activin, inhibin, and follistatin secretion may govern 3-stage maturation in the final preovulatory follicles in Magang geese. The rapid rebound of post-ovulatory secretions of inhibin and follistatin may inhibit recruitment of new SYF recruitment once a sequence of eggs is started, and may limit the egg clutch size to no more than the number of LYFs present before the first sequence egg.

Keywords:
Oviposition; Ovarian follice development; Gene expression; Hormone profile; Magang geese